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An Adaptive Meshless Method for Magnetic
Field Computation

Qiang Li and Kok-Meng Lee

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

Design of electromagnetic (EM) actuators often involves solving a magnetic field problem. This paper presents an adaptive meshless
method (MLM) that inherits many advantages of the finite-element method (FEM) but needs no explicit mesh structure for design of
EM actuators. Specifically, the paper offers a technique to estimate the distribution of numerical errors and a scheme that automatically
inserts additional nodes to improve computational accuracy and efficiency. It gives several examples. The first three numerical examples,
where exact solutions are available, provide a means to validate the adaptive MLM and evaluate its effectiveness against a regular MLM
with a uniform node distribution. The other examples, where magnetic forces are computed from Lorenz’s law, illustrate the use of
adaptive MLM for practical design of an EM actuator. The paper compares the computed forces against published experimental results.

Index Terms—Actuator design, adaptive meshless method, electromagnetic, finite element, magnetic field.

I. INTRODUCTION

RAPID growing interests in developing electric cars, com-
pact appliances, and intelligent robots for traditional and

nontraditional industries (such as agriculture, food processing,
medical service, and entertainment industries) coupled with the
widely available high-coercive rare-earth permanent magnets
(PMs) at low cost have motivated the development of novel
electromechanical actuators that are geometrically compact and
highly energy-efficient. The trends have been further acceler-
ated by the ever increasing cost of energy. Design automation of
the electromagnetic actuators involves solving a magnetic field
problem.

With the advent of computational technologies, many engi-
neering problems can be solved with numerical methods such
as finite-element method (FEM), boundary-element method
(BEM), and finite-difference method (FDM). Among these,
FEM has been most widely used as it can handle complicated
geometry with the help of a mesh generation program. How-
ever, computation accuracy of FEM depends on the quality
of its mesh. Despite considerable effort has been devoted to
improve the design of the mesh and the algorithm to generate it,
the creation of a proper element structure remains a challenge;
human involvement is still unavoidable for most of engineering
analyses with FEM. Furthermore, the need to model both the di-
mensionally very small air gaps where energy conversion takes
place and the remaining electromagnetic structure presents a
significant challenge.

Recently, meshless methods (MLM), which inherit many ad-
vantages of FEM and yet need no explicit mesh structure to
discretize geometry, have been proposed [1]–[3] and applied to
some magnetic field computation [4]–[10]. The MLM method
based on a similar theoretical framework as FEM has some
unique advantages: firstly, it requires only scatter nodes (instead
of elemental structure to discretize geometry), which signifi-
cantly eases the preprocessing task. Secondly, it uses smooth
shape functions to interpolate the field variables at a global level,
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which results in a smooth solution requiring no post-processing.
Last but not least, it is an ideal method for adaptive computation
since no element reconstruction is needed in the process of nodal
insertion.

Most of the earlier research in MLM focuses on proposing
new methods for constructing basis functions. Little attention
has been focused on solving practical applications which exploit
the advantages of MLM. Recently, some research efforts have
been seen in solving two technical problems related to adaptive
MLM. The first problem is to estimate computational error in
MLM. Methods such as residual technique in [11] and recovery
technique in [12] are effective, but they are often mathemati-
cally difficult to derive and relatively complicated to apply in
practice. The second problem is the development of a nodal in-
sertion algorithm that is needed to reconstruct integration cells
after the nodes are inserted. Most existing adaptive MLMs use a
background cell technique, which demands a significant amount
of computation time particularly when the nodal distribution
becomes irregular. Methods (such as the quadtree technique)
have been proposed to improve the efficiency of the reconstruc-
tion process [13], [14]. However, the addition of the compu-
tational load cannot be totally eliminated. In [15], a stabilized
conforming nodal integration technique has been proposed to
avoid the need for constructing background cells. This method
has some successful applications in adaptive computation, for
example [16], but its extension to three-dimensional computa-
tions remains a challenge.

For the above reasons, we offer here an alterative adaptive-
MLM for magnetic field computation for designs of electromag-
netic actuators. Specifically, this paper offers the following.

1) An Error Estimation Technique Is Offered for Adaptive
MLM: We extend the posteriori error estimation technique to
MLM. This technique was originally developed for FEM based
on the observation that the computational results at certain lo-
cations (such as nodes) are more accurate than at other loca-
tions, and has achieved some successes in adaptive FEM [17],
[18]. However, the basis function in MLM is, in general, not a
polynomial; the posteriori error estimation technique developed
for FEM cannot be directly applied to MLM. We present here a
modified error estimation built on two different support sizes of
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a basis function. As will be illustrated with a one-dimensional
(1-D) example, this modified error estimation characterizes the
true error remarkably well, and its computation in MLM is sim-
pler than in FEM.

2) Practical Issues Related to the Nodal Insertion Are
Discussed: We present an automatic node insertion method
based on a Voronoi plot technique along with the partition unity
integration [19] scheme for obtaining the discretized system of
weak-form formulated equations.

While the MLM does not need elements to perform numer-
ical integration as in FEM, most of MLM divide their compu-
tational domain into small numerical integration cells (called
background cells). When the nodal density increases at a local
area, the density of these background cells in that area must in-
crease accordingly in order to ensure the computational accu-
racy; this makes MLM lose some of its advantages. To overcome
this drawback, we introduce a different numerical integration
scheme (called the partition unity integration). In this proposed
method, a new integration cell is automatically created when a
new node is inserted.

3) The Adaptive ML Computation is Validated: Three nu-
merical examples (that have exact solutions) are given validating
the computation of adaptive MLM. They also illustrate the pro-
cesses of error estimation and automatic node insertion, and
demonstrate the effectiveness of the adaptive MLM on the con-
vergence. In this paper, the weak form equations are derived
using the Galerkin method in the MLM.

4) Applications for Design Analysis of Electromagnetic Ac-
tuators Are Illustrated: We illustrate the use of adaptive MLM
for design of electromagnetic actuators with high coercive per-
manent magnets. With two examples, magnetic forces are com-
puted using the Lorenz’s force law and compared the compu-
tational results against a set of published experimental results.
Additionally, we show how MLM can be used to improve the
torque-to-weight ratio in the pole design of a three-degree-of-
freedom (DOF) spherical motor.

II. ERROR ESTIMATION IN MLM

One of most common methods to improve the accuracy of
the numerical approximation is to reduce the nodal space (or
increase the density of the nodes). The simplest way is to uni-
formly increase the nodal density in the whole computational
domain. However, if large numerical errors occur only in cer-
tain local regions, this method is inefficient since extra nodes
in small error regions do not help improve the overall computa-
tional accuracy but they would simply lengthen the computation
time. Thus, it is desired to have an estimate of the overall error
distribution of the computation so that additional nodes can be
effectively inserted accordingly, or more specifically, into the
large error regions.

The exact numerical error can be defined as follows:

(1)

where and are the exact potential field distribution and the
approximated solution of the MLM respectively. However,
is often unavailable in practice. Thus, a modified form is used
to estimate the numerical error:

(2)

Fig. 1. RKP basis function with two different support sizes.

where and are both numerical results but is more
accurate than . As an example, is a solution obtained with

number of nodes and with nodes. However, it
is desired that can be computed without recalculating with
the denser number of nodes for computational efficiency.

We present an alternative error estimation based on two dif-
ferent support sizes of a basis function to locate regions of large
numerical errors for the adaptive MLM:

(3)

where and denote the basis functions at the th node
with a support size and respectively; is the solution
solved in the previous computation step; and is the fitted
result using the basis function with a support size of . As
an example, we include a commonly used MLM basis func-
tion (known as the reproducing kernel particle, or the RKP basis
function) in the Appendix. If the basis function is noninterpo-
lating (as often the case in MLM), can be solved from the
following system of linear equations:

(4)

where the elements of the matrix are given as

(5)

The rationale for (3) can be explained with the aid of Fig. 1,
which compares two different support sizes of a RKP basis func-
tion. As shown in Fig. 1, the larger the support size the smoother
is the basis function. In general, it is more difficult for the basis
function with a larger support size to approximate a function
with an abrupt change in the solution. Thus, regions of large er-
rors can be characterized by comparing the approximation solu-
tions solved using the two different basis functions. Numerical
experiments have confirmed this finding.

Once the error is estimated from (3), locations of large errors
are identified as follows:

(6)

where is the test location; and is a specified error
threshold. We illustrate the error estimation with an example.

Example 1. 1-D Problem Illustrating the Error
Estimation: We illustrate the method here using a 1-D
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problem characterized by the second-order ordinary differential
equation:

(7)

where .
The boundary conditions are

and

where is a constant used to control the shape of the solution.
The exact solution is given by .

To illustrate the error estimation, we solve (7) numerically
using MLM with weak form formulation (WFF). The weak form
equation is obtained by substituting the ML approximation

into (7) and integrating the result by parts, which yields

(8)

For the purpose of inserting additional nodes, we compare
the estimated error at the midpoint between two adjacent nodes
against the exact error. As shown in Fig. 2(a), the solution has
a high gradient region around . Fig. 2(b) shows that the
results of the MLM (with a uniform distribution of 21 nodes)
has a relatively large error around the high gradient region of

.
In order to insert additional nodes efficiently, the error esti-

mation must identify this large error region faithfully with rea-
sonable accuracy. As compared in Fig. 2(b), the estimated error
characterizes the true error remarkably well, and its computa-
tion in MLM is simpler than in FEM.

III. ADAPTIVE NODE INSERTION FOR MLM

Additional nodes can be inserted into the computational do-
main using the Voronoi plot [20] technique that constructs one
Voronoi cell for each node.

A. Node Insertion Scheme

An example Voronoi plot for a 2-D computational domain is
shown in Fig. 3, where the solid dots represent the nodes and
the dashed lines are boundaries of the Voronoi cells. As shown
in Fig. 3, a Voronoi cell is a polygon containing all the points
closest to the node that it surrounds. The error at the vertexes of
each Voronoi cell is computed from (3). If the error at a corner
point satisfies criterion (6), a new node is created at that point
as illustrated in Fig. 3 where the three triangles at the corners of
a Voronoi cell are example regions of large numerical errors.

B. Support Size

The support size of the inserted node is calculated using (9) as
the maximum distance from the node to its surrounding nodes
whose Voronoi cell is adjacent to this node:

(9)

Fig. 2. Comparison between exact and estimated errors. (a) Exact versus
computed solutions. (b) Exact versus estimated error.

Fig. 3. Voronoi plot with three large error points.

where is the support radius for th node; and are the
coordinates of th and th nodes, respectively. The Voronoi
cell of the th node is adjacent to the Voronoi cell of the th
node. In (9), is a constant coefficient normally taken a value
between 1 to 3. For the newly inserted node, the support size
of its basis function must be chosen carefully considering the
following tradeoffs. 1) The support radius must be sufficiently
large to cover enough nodes for constructing the ML basis
function. On the other hand, it is desired to localize the effect
of the newly inserted nodes, and thus the support radius should
be kept small. 2) Computational load increases with the support
radius.

C. Partition Unity Integration

The partition unity integration performs the numerical inte-
gration based on the support size of the basis function. When a
new node is inserted, a new integration cell is automatically cre-
ated as illustrated in Fig. 4 and thus, this numerical integration
scheme is very suitable for adaptive computation.
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Fig. 4. Partition unity integration cells.

Most of the basis functions used in MLM (including RKP
basis function) have the partition unity property:

(10)

with which the integration for an arbitrary function in the
computational domain can be computed as follows:

(11)
where is the computational domain. To exclude points outside
the computational domain, (11) is written such that the integra-
tion is within the support domain of th basis function:

(12)

where

when
when

The global integration for the whole computational domain
is divided into subintegration domains and performed upon
the support domain of basis functions. Because the support
domain of the basis functions, in general, has a regular shape,
the conventional numerical integration scheme such as Gaussian
quadrature can be applied easily.

Example 2: Effect of Adaptive Node Insertion on High
Gradient: Fig. 5 visually demonstrates the converging process
of the adaptive MLM for the 1-D example problem given in Ex-
ample 1 (Fig. 2), where the initial computation (of 11 uniformly
distributed nodes) was compared with the exact solution. At
the end of each computation, the error at the midpoint of every
two adjacent nodes is estimated, which is shown in Fig. 5(a).
New nodes are inserted at regions where the estimated errors
exceed a predefined threshold. In this research, the average of
the error distribution is used as the error threshold. The results
of automatic node insertion are given in Fig. 5(b). As shown
in Fig. 5, all inserted nodes concentrate around high gradient
region indicating that the automatic node insertion correctly
locates the large error region. We then apply the method of
partition unity integration to (8):

(13)

Fig. 5. Converging process of a 1-D problem. (a) Computational error,
(b) nodal insertion process, (c) first adaptive (15 nodes), and (d) second
adaptive (19 nodes).

As seen in Fig. 5(c) and (d), where the support radius of 1.2 is
chosen for the adaptive computation, the results of the adaptive
MLM converges to the exact solution rapidly after two adaptive
computations, each of which uses four additional nodes.

Example 3. Effect of Adaptive Insertion on Converging
Speed: Consider the 2-D problem

(14)

with the following boundary conditions:

(14a)

The exact solution is given by

(15)

We investigate here the effects of the adaptive node insertion
on the converging speed by comparing it against a commonly
used weak-form-formulated MLM (with a globally uniform dis-
tribution of nodes). In other words, the nodes of the uniform-
node MLM are increased uniformly in the computational do-
main while the adaptive MLM increases its nodes according to
the estimated errors. Both methods start with an initial compu-
tation of 6 6 nodes. Three successive insertions are performed
for each method. For the uniform-node MLM, the three succes-
sive node distributions are 8 8, 9 9, and 13 13. The node
insertion of the adaptive MLM is automatically generated using
the estimated error criterion (6) and is demonstrated in Fig. 6.

For the purpose of comparison against the exact solution
plotted in Fig. 7(a), we define the computation error as follows:

(16)
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Fig. 6. Process of adaptive nodal insertion. (a) Initial nodal distribution,
(b) first nodal insertion (54), (c) second nodal insertion (84), and (d) third titme
nodal insertion (146).

Fig. 7. Exact solution of the example and error comparison. (a) Exact solution.
(b) Error comparison.

Since the computational time is directly proportional to the
number of nodes, the comparison is made by plotting the com-
putational errors versus the number of nodes in Fig. 7(b). The
following observation can be made from the converging process
of two methods.

1) Both methods tend to converge to the exact solution as the
number of nodes increase. However, the adaptive MLM
has a significantly higher converging rate.

2) The adaptive MLM effectively identifies the large error
regions occurring around the regions of high gradient as
expected.

3) The first two nodal insertions result in rapid error reduc-
tion as compared to the third insertion. As the number of
nodal insertions increase, the error caused by highly irreg-
ular nodal distribution may gradually outweigh the benefit
generated by additional nodes hinting that the number of
nodal inserting iterations should not be too high in order
to maintain the efficiency of algorithm.

IV. APPLICATIONS TO EM ACTUATORS

The prediction of magnetic forces involved in the design of
an electromagnetic (EM) actuator relies on the solution of its
magnetic field. Due to the field discontinuity at the material
interface, and the fact that the air gap between the stator and
rotor poles is often very small as compared to the dimension of
the overall field distribution, it is often difficult for the regular
MLM with a smooth basis function to achieve satisfactory ac-
curacy around the air gaps where energy conversion takes place.
The following example shows how adaptive MLM can be used
effectively to improve the field accuracy around these regions.
Specifically, the objectives of this example are as follows.

1) Illustrate the use of adaptive node insertion to approxi-
mate discontinuities around the material interface.

2) For validation of the adaptive MLM computation, the
magnetic force between a permanent magnet (PM) and
an electromagnet (EM) calculated using Lorenz Law
with the computed field is compared against published
experimental results.

3) Demonstrate how the adpative MLM can be used as an ef-
fective tool to analyze designs. As an example, we con-
sider the pole design of a spherical motor which is capable
of providing three-DOF motion in a single joint [21]. By
comparing two differentdesigns, we illustrate the effects of
design geometry on the torque-to-weight characteristics.

For the above objectives, we use the adaptive MLM to solve
for the magnetic field intensity around a cylindrical
permanent magnet (uniformly magnetized along its axis,

) in free space, where is the magnetic scalar potential. The
resultsprovideabasis forcomputing themagnetic forceunder the
influence of an electromagnet using Lorenz’s law. In cylindrical
coordinates, can be solved from the Laplacian equation:

(17)

where , and is the radius of the magnet.
For this axisymmetric problem; . The BC at the
infinity far boundary is

(17a)

At the material interface, is continuous along the tangential
direction; and the flux density is continuous along its normal.
In terms of scalar potential functions

(17b)

(17c)

where the subscripts and denote as two different regions. In
addition, for the symmetry

at (17d)

The weak form of this is shown in (18)

(18)
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Fig. 8. Effect of adaptive node on handling of discontinuity. (a) Magnetic
scalar potential. (b) Magnetic field intensity.

Fig. 9. Experiment configuration.

Once the magnetic field is computed, the force can be obtained
by integrating the force density exerted on the current carrying
conductor by its interaction with the magnetic field:

(19)

where is current density and is the volume of the current
conductor.

A. Approximation of a Discontinuity Magnetic Field

The magnetic scalar potential and field intensity along the
axis are obtained by the adaptive MLM and compared against
the closed form solution [22] in Fig. 8(a) and (b), respectively.
In this example, 41 41 nodes are used in the regular MLM.
The adaptive MLM starts with a uniform nodal distribution of
221 (uniform 13 17) nodes and increases to 658 nodes after
three successive insertions. As in Example 2, all the additional
nodes are inserted into large gradient regions around the magnet
pole.

While the result of the uniform-node MLM offers a very good
overall prediction but exhibits some oscillations near the discon-
tinuous interface. As compared in Fig. 8, the potential and field
intensity computed by the adaptive MLM with only 658 nodes

TABLE I
DIMENSIONS OF EXAMPLE 4

Fig. 10. Comparison between computed and experimental results. (a) Axial
force. (b) Restoring force.

(less than half of the number of nodes used by the uniform-node
MLM) match the closed form solution very well at the material
interface. With a higher nodal concentration at the material in-
terface, the adaptive MLM is able to approximate the disconti-
nuity satisfactorily with a continuous basis function. This sug-
gests that the adaptive MLM is a good alternative for solving
problem with field discontinuity.

Example 4: Force Between a Permanent Magnet and an Elec-
tromagnet: This example is selected from one of the T.E.A.M.
problems [23], where the experimental setup is shown in Fig. 9
and Table I.

Fig. 10 compares the computed forces against published ex-
perimental data [23]. The computed restoring force matches
the experimental results very well while the computed axial
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Fig. 11. Comparison of pole designs (not to scale). (a) Design 1 [24], [25].
(b) Design 2 [24], [25].

TABLE II
PARAMETERS USED IN SIMULATION

Fig. 12. Comparison of torque per unit radius.

force is slightly larger than the measured force but within 15%
difference.

Example 5: Pole Design of a Three-DOF Spherical Actu-
ator: Fig. 11 compares the pole design of two different pro-
totype spherical motors [24], [25]. The geometry and layout of
the pole have a significant influence on the torque performance
of a spherical motor [21]. The rotor of Design #1 [24] consists
of two rows of eight small PMs whereas Design #2 [25] uses
one row of eight large PMs as rotor poles. Detailed geometries
of the two pole designs are given in Table II.

The torque between the EM and PM is computed using
Lorenz law from the adaptive-MLM computed field for the two
configurations. To provide a common basis for comparison, we
compare the torque output per unit radius for a single EM-PM
pole-pair. As compared in Fig. 12, the torque per unit radius
for Design #1 is significantly higher although Design #2 uses a
much larger PM rotor pole for similar input power. In addition,
the compact pole geometry in Design #1 allows for a larger
number of rotor poles to be used, which could further improve
the torque-to-volume ratio for a specified input power.

Fig. 13. Effect of pole layout on torque generated. (a) Pole geometry.
(b) Torque for different � (� = 26 ).

To investigate the effect of the PM-pole layout (denoted as
in Fig. 13) on the torque profile for Design #1, we compute the
torque about the axis for three different rotor pole layouts for
a specified pair of EM poles spaced at . The three dif-
ferent layouts are and . For the case ,
only one PM that has the same length but twice the volume is
used. As shown in Fig. 13(b), the pole layout has a significant ef-
fect on the torque profile (both its maximum magnitude and the
smoothness of its shape). As illustrated in Figs. 12 and 13(b), the
maximum magnitude of the torque and the range of its influence
can be doubled but only with a carefully selected set of design
parameters. These results illustrate how the adaptive MLM can
be effectively used to analyze the effects of pole design on the
torque performance of an EM actuator.

V. CONCLUSION

A relative complete adaptive computational method for
MLM has been presented and illustrated with several examples.
This practical method, which has been validated by comparing
against exact solutions, overcomes two technical difficulties
associated with MLM; namely, error estimation and nodal
insertion. Our results show that the method can faithfully locate
large error regions, automatically insert nodes to these regions
without human involvement, and improve the computational
efficiency significantly. Comparing the converging speed of
the adaptive MLM against a regular MLM (with uniform
distributed nodes) shows that the adaptive MLM is effective
and computationally efficient. Additionally, we compare the
electromagnetic forces computed using Lorenz’s law with the
field results predicted by the adaptive MLM against published
experimental results, which show excellent agreement.



LI AND LEE: ADAPTIVE MESHLESS METHOD FOR MAGNETIC FIELD COMPUTATION 2003

APPENDIX

REPRODUCING KERNEL PARTICLE (RKP) BASIS FUNCTION

The RKP basis function can be expressed as

(A1)

where is a kernel (or weight) function centered
at ; the support size is a design parameter that influences the
effective region of the kernel function.and is a set
of enrichment functions that vary with the location of approxi-
mation . The following cubic B-spline function [14] is chosen
for the kernel function:

for
for
for

(A2)

where ; The function is given
by [14]:

(A3)

where ; and
. When a new node is inserted, the

basis functions of the original nodes are also updated. In order to
minimize computation, the moment matrix is updated using
its value from the previous computational step:

(A4)

where is the number of newly added nodes.
To facilitate the procedure for imposing the boundary condi-

tions in WFF, a modified basis function that can be com-
puted from the RKP basis function (A1) and has an interpolation
property is introduced:

(A5)

where the element is defined by

(A6)

such that

(A7)
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